

Data Validation Report

USGS EPA-Pavillion Fracking

TestAmerica Lot # 280-28076-1

Validation Performed By:

Date: 06-14-12

TABLE OF CONTENTS

Cover/TOC	1
Memoranda	
Volatiles	3
Semivolatiles	6
DRO	8
GRO	1
RSK-175	1
PAH	1
Glycols	1
Metals	1
General Chemistry	2
Data Qualifier Definitions	2
Annotated Results Forms	2
Calculation verifications	4
Validation Worksheets	5

Date: 06/01/2012

To: Gary Cottrell

From: Marcia Hilchey

Subject: GC/MS Organic Data Review and Validation - USGS

Lot #: 280-28076-1

Laboratory: TestAmerica-Denver

Analysis: VOCs

Overview

The following table lists the samples included in the validation of Lot # 280-28076-1 that were prepared and analyzed using EPA Method 8260B.

	Sample ID No.	ID No.	Analytical Method	Sample Matrix
M	W02	280-28076-1	ED 4 00/0D	XX7-4
M	W02 (unpreserved)	280-28076-2	EPA 8260B	Water

Data Qualifiers (see following sections for detailed explanations)

All samples Results for 2-butanone, acrylonitrile, and isopropanol should be qualified UJ due to RF

< 0.05 and > 0.01.

Results for ethanol and isobutanol should be qualified R due to $RF \le 0.01$.

Results for tert-butyl alcohol should be qualified J+ due to ICV $\geq 20\%$ and RF ≤ 0.05

10.0
bac

Results for acetone should be qualified J- due to CCV >40% with negative bias.

Summary/General Comments

Data were reported for all required analytes.

This validation was performed according to the U.S. Department of Energy NNSA Service Center Model Data Validation Procedure (MDVP), Rev. 4.2.

See the attached Data Assessment Worksheets for supporting documentation on the data review and validation.

Sample Shipping/Receiving

All chain of custody, analysis request, and sample receipt documentation was complete and correct.

Holding Times and Preservation

The samples were analyzed within the prescribed holding times and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

All initial and continuing calibration QC acceptance criteria were met with the following exceptions.

The initial calibration average relative response factors (RRF) for 2-butanone, tert-butyl alcohol, acrylonitrile, and isopropanol were <0.05 but 7 0.01All associated sample results that were non-detects (ND) should be qualified UJ and all associated detected results should be qualified J.

The RRFs for ethanol and isobutanol were < 0.01. All associated sample results were ND and should be qualified \mathbf{R} .

The initial calibration verification and/or continuing calibration (ICV/CCV) percent difference for tert-butyl alcohol was $\geq 20\%$ but $\leq 40\%$ with positive bias. All associated sample results were detects and should be **qualified J+**. The ICV/CCV %D for isopropanol was $\geq 20\%$ and $\leq 40\%$ with negative bias. All associated sample results were ND and were previously qualified due to low RF. Associated results should not be further qualified. The ICV/CCV %D for acctone was $\geq 40\%$ and $\leq 60\%$ with negative bias. All associated sample results were detects and should be **qualified J-**.

Blanks

No target analytes were detected in the method blank.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

The parent sample used for MS/MSD analysis was from another SDG, from an unknown client. The MS/MSD results were therefore not evaluated for validation of this SDG. No sample data should be qualified as a result. An LCS and LCSD were analyzed to provide accuracy and precision data for the samples.

<u>Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)</u>

The LCS/LCSD analyses met all QC acceptance criteria. It should be noted that 13 of 80 target analytes were not represented in the LCS/LCSD spiking solution. Based on professional judgment, no sample data should be qualified as a result.

Detection Limits/Dilutions

The samples were analyzed at reduced aliquots, resulting in a 20X dilution. Reported MDLs and RLs were adjusted accordingly.

Tentatively Identified Compounds (TICs)

Tentatively identified compounds were requested and reported, but not assessed for data validation.

Other QC

Date: 06/01/2012

To: Gary Cottrell

From: Marcia Hilchey

Subject: GC/MS Organic Data Review and Validation - USGS

Lot #: 280-28076-1

Laboratory: TestAmerica-Denver

Analysis: SVOCs

Overview

The following table lists the samples included in the validation of Lot # 280-28076-1 that were prepared and analyzed using EPA Method 8270C.

Sample ID No.	Laboratory ID No.	Analytical Method	Sample Matrix
MW02	280-28076-1	EPA 8270C	Water
MW02 DL	208-28076-1 DL	EPA 8270C	Water

<u>Data Qualifiers</u> (see following sections for detailed explanations)

No data qualifiers should be applied to SVOC by 8270C sample results in this data package.

Summary/General Comments

Data were reported for all required analytes.

This validation was performed according to the U.S. Department of Energy NNSA Service Center Model Data Validation Procedure (MDVP), Rev. 4.2.

See the attached Data Assessment Worksheets for supporting documentation on the data review and validation.

Sample Shipping/Receiving

All chain of custody, analysis request, and sample receipt documentation was complete and correct.

Holding Times and Preservation

The samples were extracted and analyzed within the prescribed holding times and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

All initial and continuing calibration QC acceptance criteria were met with the following exceptions.

The continuing calibration percent differences for bis(2-chloroisopropyl)ether and 4-nitrophenol were > 20% but < 40% with positive bias. All associated sample results were non-detects (ND) and should not be qualified.

Blanks

No target analytes were detected in the method blank with the following exception. Benzyl alcohol was detected in the MB at < PQL. The associated sample results were NDs and should not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

The parent sample used for MS/MSD analysis was from another SDG, from an unknown client. The MS/MSD results were therefore not evaluated for validation of this SDG. No sample data should be qualified as a result. An LCS and LCSD were analyzed to provide accuracy and precision data for the samples.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS/LCSD analyses met all QC acceptance criteria. It should be noted that 6 of 51 target analytes were not represented in the LCS/LCSD spiking solution. Based on professional judgment, no sample data should be qualified as a result.

Detection Limits/Dilutions

Sample 280-28076-1 DL was analyzed at a 4X dilution. Reported MDLs and RLs were adjusted accordingly.

Tentatively Identified Compounds (TICs)

Tentatively identified compounds were requested and reported, but not assessed for data validation.

Other QC

Date: 06/02/2012

To: Gary Cottrell

From: Marcia Hilchey

Subject: GC Organic Data Review and Validation - USGS

Lot #: 280-28076-1

Laboratory: TestAmerica-Denver

Analysis: Diesel Range Organics (DRO) by EPA 8015B

Overview

The following table lists the sample included in the validation of Lot # 280-28076-1 that was prepared and analyzed using EPA Method 8015B.

Sample ID No.	Laboratory ID No.	Analytical Method	Sample Matrix
MW02	280-28076-1	EPA 8015B	Water

Data Qualifiers (see following sections for detailed explanations)

No qualifications were applied to DRO sample results in this data package.

Summary/General Comments

Data were reported for all required analytes.

This validation was performed according to the U.S. Department of Energy NNSA Service Center Model Data Validation Procedure (MDVP), Rev. 4.2.

See the attached Data Assessment Worksheets for supporting documentation on the data review and validation.

Sample Shipping/Receiving

All chain of custody, analysis request, and sample receipt documentation was complete and correct.

Holding Times and Preservation

The sample was analyzed within the prescribed holding times and properly preserved.

Calibration

All initial and continuing calibration QC acceptance criteria were met.

Blanks

No target analytes were detected in the method blank.

Surrogates

Surrogate recoveries met all acceptance criteria.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

The parent sample used for MS/MSD analysis was from another SDG, from an unknown client. The MS/MSD results were therefore not evaluated for validation of this SDG. No sample data should be qualified as a result. An LCS and LCSD were analyzed to provide accuracy and precision data for the samples.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS/LCSD analyses met all QC acceptance criteria.

Target Compound Identification

The retention times for the target analytes that were detects in the samples were within 30 second windows established with the initial calibration standards.

Detection Limits/Dilutions

Analysis was performed on a slightly reduced aliquot due to lack of sufficient sample volume. Reported MDLs and RLs were adjusted accordingly.

Other QC

Date: 06/02/2012

To: Gary Cottrell

From: Marcia Hilchey

Subject: GC Organic Data Review and Validation - USGS

Lot #: 280-28076-1

Laboratory: TestAmerica-Denver

Analysis: Gasoline Range Organics (GRO) by EPA 8015B

Overview

The following table lists the samples included in the validation of Lot # 280-28076-1 that were prepared and analyzed using EPA Method 8015B.

Sample ID No.	ID No.	Analytical Method	Sample Matrix
MW02	280-28076-1	EPA 8015B	Water
MW02 unpreserved	280-28076-2	EPA 8015B	Water

<u>Data Qualifiers</u> (see following sections for detailed explanations)

Sample 280-28076-2 The result for GRO should be qualified J+ due to high surrogate recovery.

Summary/General Comments

Data were reported for all required analytes.

This validation was performed according to the U.S. Department of Energy NNSA Service Center Model Data Validation Procedure (MDVP), Rev. 4.2.

See the attached Data Assessment Worksheets for supporting documentation on the data review and validation.

Sample Shipping/Receiving

All chain of custody, analysis request, and sample receipt documentation was complete and correct.

Holding Times and Preservation

The samples were analyzed within the prescribed holding times and properly preserved.

Calibration

All initial and continuing calibration QC acceptance criteria were met.

Blanks

No target analytes were detected in the method blank.

Surrogates

Recovery for surrogate a,a,a-trifluorotoluene in sample 280-28076-2 was \geq the upper acceptance limit. The associated sample result was a detect and should be **qualified J**+.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

The parent sample used for MS/MSD analysis was from another SDG, from an unknown client. The MS/MSD results were therefore not evaluated for validation of this SDG. No sample data should be qualified as a result. An LCS and LCSD were analyzed to provide accuracy and precision data for the samples.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS/LCSD analyses met all QC acceptance criteria.

Target Compound Identification

The retention times for the target analytes that were detects in the samples were within 30 second windows established with the initial calibration standards.

Detection Limits/Dilutions

Analysis was performed on a reduced aliquot due to high analyte concentration, resulting in a 20X dilution. Reported MDLs and RLs were adjusted accordingly.

Other QC

Date: 06/01/2012

To: Gary Cottrell

From: Marcia Hilchey

Subject: GC Organic Data Review and Validation - USGS

Lot #: 280-28076-1

Laboratory: TestAmerica-Pittsburgh

Analysis: Dissolved Gases and propane by RSK-175

Overview

The following table lists the sample included in the validation of Lot # 280-28076-1 that was prepared and analyzed using Method RSK-175.

Sample ID No.	Laboratory ID No.	Analytical Method	Sample Matrix
MW02	280-28076-1	RSK-175	Water

Data Qualifiers (see following sections for detailed explanations)

No data qualifiers should be applied to dissolved gases or propane sample results in this data package.

Summary/General Comments

Data were reported for all required analytes.

This validation was performed according to the U.S. Department of Energy NNSA Service Center Model Data Validation Procedure (MDVP), Rev. 4.2.

See the attached Data Assessment Worksheets for supporting documentation on the data review and validation.

Sample Shipping/Receiving

All chain of custody, analysis request, and sample receipt documentation was complete and correct.

Holding Times and Preservation

The sample was analyzed within the prescribed holding times and properly preserved.

Calibration

All initial and continuing calibration QC acceptance criteria were met.

Blanks

No target analytes were detected in the method blank.

Surrogates

Surrogate recovery met QC acceptance criteria for propane analysis. Surrogates are not analyzed for dissolved gases analysis.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

The parent sample used for MS/MSD analysis was from another SDG, from an unknown client. The MS/MSD results were therefore not evaluated for validation of this SDG. No sample data should be qualified as a result. An LCS and LCSD were analyzed to provide accuracy and precision data for the samples.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS/LCSD analyses met all QC acceptance criteria.

Target Compound Identification/Confirmation

The retention times for the target analytes that were detects in the samples were within 30 second windows established with the initial calibration standards.

Confirmation analysis was performed for dissolved gases on a confirmation column. Results were reported for methane and ethylene from both columns. Results from both columns were validated. Ethane results were only reported from one column since ethane is a co-cluter on the other column. RPDs for results from the two columns were acceptable. Confirmation analysis is not performed for propane. No sample data were qualified as a result, based on professional judgment.

Detection Limits/Dilutions

The sample was diluted 18X for dissolved gases analysis and 2X for propane analysis. Reported MDLs and RLs were adjusted accordingly.

Other QC

Date: 06/01/2012

To: Gary Cottrell

From: Marcia Hilchey

Subject: GC/MS Organic Data Review and Validation - USGS

Lot #: 280-28076-1

Laboratory: TestAmerica-Denver Analysis: PAH by 8270C-SIM

Overview

The following table lists the sample included in the validation of Lot # 280-28076-1 that was prepared and analyzed using EPA Method 8270C-SIM.

Sample ID No.	Laboratory ID No.	Analytical Method	Sample Matrix
MW02	280-28076-1	EPA 8270C-SIM	Water

<u>Data Qualifiers</u> (see following sections for detailed explanations)

Sample 280-28076-1 Results for dibenz(a,h)anthracene and indeno (1,2,3-cd)pyrene should be

qualified 400U due to method blank (MB) contamination.

Results for all non-detects (ND) and U-qualified analytes should be qualified UJ, and results for all detects should be qualified J due to lack of precision

information.

Summary/General Comments

Data were reported for all required analytes.

This validation was performed according to the U.S. Department of Energy NNSA Service Center Model Data Validation Procedure (MDVP), Rev. 4.2.

See the attached Data Assessment Worksheets for supporting documentation on the data review and validation.

Sample Shipping/Receiving

All chain of custody, analysis request, and sample receipt documentation was complete and correct.

Holding Times and Preservation

The sample was extracted and analyzed within the prescribed holding times and properly preserved.

Calibration

All initial and continuing calibration QC acceptance criteria were met.

Blanks

No target analytes were detected in the MB with the following exceptions.

Benzo(b)fluroanthene; benzo(a)pyrene; benzo(k)fluoranthene; benzo(g,h,i)perylene; dibenz(a,h)anthracene; fluoranthene; pyrene, and indeno(1,2,3-cd)pyrene were detected in the MB at < PQL. All associated sample results that were < PQL and < 5X the MB concentration should be qualified. U at the PQL. All associated ND results and results > 5X the MB concentration should not be qualified.

Surrogates

The sample was initially diluted 4X, therefore surrogate recoveries were not evaluated. No sample data should be qualified as a result.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

The parent sample used for MS/MSD analysis was from another SDG, from an unknown client. The MS/MSD results were therefore not evaluated for validation of this SDG. No sample data should be qualified as a result. An LCS was analyzed to provide accuracy data for the samples.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS analysis met all QC acceptance criteria. It should be noted that the LCS solution did not include 1- or 2-methylnaphthalene. Based on professional judgment, no sample data should be qualified as a result.

An LCSD was not analyzed. All ND sample results and sample results previously qualified U (see Blanks section) should be **qualified** UJ, and all detected sample results should be **qualified** J due to lack of precision information.

Detection Limits/Dilutions

Sample 280-28076-1 was analyzed at a 4X initial dilution. Reported MDLs and RLs were adjusted accordingly.

Other QC

Date: 06/02/2012

To: Gary Cottrell

From: Marcia Hilchey

Subject: GC Organic Data Review and Validation - USGS

Lot #: 280-28076-1

Laboratory: TestAmerica-Austin Analysis: glycols by EPA 8015B

Overview

The following table lists the sample included in the validation of Lot # 280-28076-1 that was prepared and analyzed using EPA Method 8015B.

and the second s	Sample ID No.	Laboratory ID No.	Analytical Method	Sample Matrix
	MW02	AVE0007-01	EPA 8015B	Water

Data Qualifiers (see following sections for detailed explanations)

Sample AVE0007-01 The results for diethylene glycol, ethylene glycol, propylene glycol, and

triethylene glycol should be qualified UJ due to lack of precision information.

Summary/General Comments

Data were reported for all required analytes.

This validation was performed according to the U.S. Department of Energy NNSA Service Center Model Data Validation Procedure (MDVP), Rev. 4.2.

See the attached Data Assessment Worksheets for supporting documentation on the data review and validation.

Sample Shipping/Receiving

All chain of custody, analysis request, and sample receipt documentation was complete and correct.

Holding Times and Preservation

The sample was analyzed within the prescribed holding time and properly preserved.

Calibration

All initial and continuing calibration QC acceptance criteria were met.

Blanks

No target analytes were detected in the method blank. It should be noted that the data package did not include a results form for the method blank. Method blank results were found in the raw data.

Surrogates

Surrogate recoveries met all acceptance criteria.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

The parent sample used for MS/MSD analysis was from another SDG, from an unknown client. The MS/MSD results were therefore not evaluated for validation of this SDG.

No LCSD or replicate analyses were performed; therefore there is no applicable measure of precision reported. All associated sample results were non-detect and should be qualified UJ.

Laboratory Control Sample (LCS)

The LCS analysis met recovery acceptance criteria.

Target Compound Identification

The retention time windows were not reported. No sample data should be qualified as a result.

Detection Limits/Dilutions

Detection limits were not reported on results forms. No samples were diluted.

Other QC

Date: 06/05/2012

To: Gary Cottrell

From: Marcia Hilchey

Subject: Inorganic Data Review and Verification - USGS

Lot #: 280-28076-1

Laboratory: TestAmerica - Denver

Analysis: Metals

Overview

The following table lists the sample included in the validation of Lot # 280-28076-1 that was prepared and analyzed using EPA Methods 6010B (ICP-AES), 6020 (ICP-MS), and 7470A (CVAA mercury).

Sample ID No.	Laboratory ID No.	Analytical Methods	Sample Matrix
MW02	280-28076-1	EPA 6010B,	
		6020,	Water
		7470A	

<u>Data Qualifiers</u> (See following sections for detailed explanations. If a sample is not listed, qualifications are not required.)

Sample 280-28076-1 The result for dissolved Sb should be qualified 2.0U due to blank

contamination.

The result for total Hg should be qualified UJ due to an associated

negative blank value.

Dissolved Co, total Sb, and total Ag should be qualified 0.44U, 3.86U,

and 8.2U, respectively, due to blank contamination.

The result for total As should be **qualified** J+ due to high CRI recovery. The result for total Al should be **qualified** J due to high serial dilution

%D.

Summary/General Comments

Data were reported for all required analytes.

This validation was performed according to the U.S. Department of Energy NNSA Service Center Model Data Validation Procedure (MDVP), Rev. 4.2.

See the attached Data Assessment Worksheets for supporting documentation on the data review and verification.

Sample Shipping/Receiving

All chain of custody, analysis request, and sample receipt documentation was complete and correct.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and properly preserved.

ICP-MS Instrument Tune

All instrument tune requirements were met.

Calibration

All initial and continuing calibration QC acceptance criteria were met. It should be noted that the y-intercept values are not reported for ICPAES or ICPMS analyses. No sample data should be qualified as a result.

Reporting Limit Verification

All CRA/CRI recoveries met QC acceptance criteria with the following exception. The CRI recovery for total As was $\geq 130\%$. The associated sample result was a detect $\leq 5X$ the practical quantitation limit (PQL) and should be **qualified J**+. The CRI recovery for dissolved Ba was $\leq 70\%$. The associated sample result was $\geq 5X$ the PQL and should not be qualified.

It should be noted that the CVAA CRA was not reported in the QC summary, but was reported in the raw data.

Blanks

No target analytes were detected in the blanks except as follows.

Dissolved Sb was detected in an associated CCB at > PQL. The associated sample result was a detect < PQL and should be **qualified 2.0U** at the PQL. Dissolved Na, total As, and total Na were detected in associated blanks at < PQL. The associated sample results were > 5X the highest associated blank concentrations and should not be qualified. Dissolved Co, total Sb, and total Ag were detected in associated blanks at < PQL. The associated sample results were detects < 5X the highest associated blank concentrations and should be **qualified U** at 5X the blank values.

Total Hg was detected in associated CCBs at negative values with absolute value > the MDL but < the PQL. The associated sample result was a non-detect (ND) and should be **qualified UJ**. It should be noted that the negative blank values with absolute value >MDL and < PQL were not reported in the blank summaries, but were reported in the raw data.

ICP-MS Internal Standards

All ICP-MS internal standards intensities met QC acceptance criteria.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

The MS/MSD analyses for ICPMS total and dissolved, ICP dissolved, and CVAA total and dissolved analyses were performed on parent samples from another SDG, from an unknown client. The MS/MSD results were therefore not evaluated for these analyses. No sample data should be qualified as a result. LCS/LCSD analyses provided accuracy and precision data for the samples.

The MS/MSD met all QC acceptance criteria for the ICP total analysis.

Laboratory Replicate

Laboratory replicate analyses were not performed. MS/MSD and LCS/LCSD results were evaluated for precision assessment. No sample data were qualified as a result.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

All LCS/LCSD acceptance criteria were met.

Detection Limits/Dilutions

MDLs and PQLs were properly reported in the data package. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB) Analyses

Results of the ICS A and AB analyses were not evaluated because the concentrations of Al, Ca, Fe and Mg in the field sample was < those in the ICS solutions. No sample data should be qualified as a result.

ICP Serial Dilution

The serial dilution analyses met all QC acceptance criteria with the following exception.

The serial dilution percent difference for total Al was $\geq 10\%$. The associated sample result was a detect and should be qualified J.

Other QC

Date: 06/05/2012

To: Gary Cottrell

From: Marcia Hilchey

Subject: Inorganic Data Review and Verification - USGS

Lot #: 280-28076-1

Laboratory: TestAmerica - Denver Analysis: General Chemistry

Overview

The following table lists the sample included in the validation of Lot # 280-28076-1 that was prepared and analyzed using analytical methods listed in the table below.

Sample ID No.	Laboratory ID No.	Analytical Methods	Sample Matrix
MW02		EPA 365.1 (total and dissolved P); EPA 350.1(ammonia); EPA 9056 (dissolved anions by IC); EPA353.2 (nitrate/nitrite); SM 2540C(total dissolved solids – TDS); EPA 9060 (total and dissolved inorganic carbon – TIC/ total and dissolved organic carbon – TOC); EPA 425.1 methylene blue active substances – MBAS)	Water

<u>Data Qualifiers</u> (See following sections for detailed explanations. If a sample is not listed, qualifications are not required.)

Sample 280-28076-1 The result for ammonia should be **qualified 2.15U** due to blank

contamination.

Summary/General Comments

Data were reported for all required analytes.

This validation was performed according to the U.S. Department of Energy NNSA Service Center Model Data Validation Procedure (MDVP), Rev. 4.2.

See the attached Data Assessment Worksheets for supporting documentation on the data review and verification.

Sample Shipping/Receiving

All chain of custody, analysis request, and sample receipt documentation was complete and correct.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and properly preserved.

Calibration

All initial and continuing calibration QC acceptance criteria were met.

Blanks

No target analytes were detected in the blanks except as follows.

Total and dissolved P, ammonia, and total and dissolved TIC were detected in ICB/CCBs and/or method blanks associated with the sample at < PQL. The sample result for ammonia was a detect < 5X the associated blank concentration and should be **qualified 2.15U** at 5X the blank value. Sample results for total and dissolved P, and total and dissolved TIC were detects > 5X the highest associated blank concentration and should not be qualified.

Dissolved P was reported in the method blank at a negative value > MDL and < PQL. The associated sample result was a detect > 5X the MDL and should not be qualified.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS/MSD analyses for all reported analyses were performed on parent samples from another SDG, from an unknown client. The MS/MSD results were therefore not evaluated for these analyses. No sample data should be qualified as a result. LCS/LCSD analyses provided accuracy and precision data for the samples.

Laboratory Replicate

Laboratory replicate analyses were not performed. MS/MSD and LCS/LCSD results were evaluated for precision assessment. No sample data were qualified as a result.

<u>Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)</u>

The LCS/LCSD analyses met all QC acceptance criteria.

Detection Limits/Dilutions

MDLs and PQLs were properly reported in the data package. The sample was not diluted with the following exceptions. The sample was diluted 20X for chloride, and 2X for total P and dissolved P due to high analyte concentration.

Other QC

Data Qualifier Definitions

The following data qualifiers and their definitions are applied in the MDVP data review process:

- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.
- J The associated numerical value is an estimated quantity.
- J+ The associated numerical value is an estimated quantity with a suspected positive bias.
- J- The associated numerical value is an estimated quantity with a suspected negative bias.
- R The data are unusable (analyte may or may not be present). Resampling and reanalysis are necessary for verification.
- N Presumptive evidence of the presence of the material.
- NJ Presumptive evidence of the presence of the material at an estimated quantity.
- NJ+ Presumptive evidence of the presence of the material at an estimated quantity with a suspected positive bias.
- NJ- Presumptive evidence of the presence of the material at an estimated quantity with a suspected negative bias.
- UJ The material was analyzed for but was not detected. The sample quantitation limit is an estimated quantity.

!"#\$ %&	,								5"()** 5, ()*)*	+)+ -
			!"#\$\$							
622%0(3"%0(\$ 622\$	+4.)**	+-	622 3".) *6)	#2#\$ •!/#\$ #' 0*1 / ' 0*1		%153 34\$!	
3"\$)**	+-					, 01		•	
6				, 27*!8		9:		%\$!	, !	
6 6			UJ	4+				4	,	
60(00	\$ \$				4))	
• ;				+				4		
.; .00				\$ \$				4)		
. (00				***************				4)		
. : . 0				\$ \$				4)	
. 7%<=8			UJ	\$)	,	
(2:(\$				-)	
0 (0;				\$ \$				4 4)		
0(0				\$				4)		
00 0:				\$				4)	
00				\$ \$				4)	
0				\$				4)		
)0 2 >\$00				\$ \$) 4		
2 >4\$0""				\$				4		
>\$40""				\$				-) 1		
>\$0 \$0				\$ \$				4 4)		
>\$ 0;				\$				4		
>4 \$ 0; >)\$ 0;				\$				4		
\$0(:0				\$				4)	
> \$00				\$))	·	
>\$00 > \$00				\$ \$ \$ \$ \$ \$ \$ \$)		
> \$0""				\$				4		
>4\$0""				\$))		
>\$0"" > \$0""				\$ \$				4 4		
\$2"" 0				\$				+		
<0			R	\$				-		
<0; <00				\$				4 +)	
<00				\$)	,	
?&0 (?&				\$ \$ \$ \$ \$ \$				4)		
fα # (0				\$ \$				4))		
#2			R	\$				4		
#2""" #2""";			UJ	\$				4		
								7		
8!'				Page 8	53 o f 6	3408				MLH 6/13/

6/13/12

!"#\$ %&	,						\$"()** \$, ()*)	*	+)+ -
			! "#\$%						
622%0 (3"%0 (+4.		622. 0 3". 0) *6)	#2# \$!/#\$		%153 34\$	
\$						# ' 0*1		į	
622\$)**	+-				/ ' 0*1		!	
3"\$)**	+-							
6			, 27*!	8	9:	%:	\$!	, !	
%0			the time that the time time time time the time time time			4		'	
%00 (\$ \$ \$))	
) %0"7%#. =8			\$						
%00			\$			+			
@A"@)	
"00			_)))		
			\$ \$			4)			
.;			\$)		
3";			4			4			
@ "#2""			¢)			
2. ;			\$ \$			4)	•		
L . ,			\$			4)	, }		
B00			\$ \$ \$ \$.,			
. 0			J+ 4						
.;			\$			4			
> >B00			\$)			
> >>B00			\$ \$ \$)			
B00			\$)			
В			-			4))		
2 >\$00			\$			4			
2 >4\$0""			\$			4			
»4B0;			\$)			
>>)B0; >> B00			\$)			
>>B00			Φ Φ			+)	\		
B00			* * * * * * * *			4	,		
B0:0			\$ \$			+)	
>>4B0""			\$			·		+	
»)B0;)			4			
>4>+B0;			,			4			
»4B0;)+ \$			+)))	
10(\$						
@2>B			4			4)	
			C,		9:		6"!2		
). :; 78			-						
\$:078									
>\$00()78			-						
B (78			-				+		

!"#\$ %&	,						5"()** +)+ 5, ()*)* -
			!"#\$%				
622%0 (3"%0 (\$	+4.		622. 0 3". 0) *6)	#2#\$ <u>!</u> / #\$ #' 0*1	%153 34\$ <u>!</u>
622\$ 3"\$)**)**	+- +-				/ ' 0*1	!
&' (1		+, &-!.))*		
2	6				, B	<2, 27*18	9:
	. &C)				\$	
)-	3") 4		В
++	#2)4	_	В
	DΕ))		В
	DE)++		В
)	. >0				+)		В
	DED				+)	В
_	3				+		В
+-	>0					+)	В
+)4	?		&	4)		
	DE)	-	В
	0&				+-		
	%00&))	-+	
	. ;>00	1			44		В
	. ;>00	1)	В

"/ +012212%

!"#\$ %&	,								"()** 5, ()*)*	+)+ -
			! "#\$\$							
622%0 (3 " %0 (\$	+4		622. 3". () *6)	#2#\$ 1/#\$ #' 0*1		%153 3\$!	
\$ 622\$ 3"\$)**)**	4 – 4 –					/ ' 0'1		j ī	
6 6				, 27*!8		9:		%\$!	, !	
6 6			 UJ)+ \$				4)	
;								4	,	
; 00				* * * * * * *				4)		
(00				\$ \$				4)		
:				\$				4		
0				\$))	
7%<=8			UJ	\$ •				4))		
0			J+	4				,		
; ;				\$)		
•				***				4)		
; [2: (\$				4 -	`	
Z.(\$ \$				4)	
(\$				4)		
(0				\$				4)		
0				\$				4)	
): 0				\$				4)	
50(\$				4)	Ś	
ı				\$				4)	,	
0				\$)		
>\$40 '''' 50				\$ ©				-) 4)		
>\$0;				\$ \$				4) 4		
>4\$0;								·		
>)\$ 0;				\$				4		
0:)0				\$)	
> \$00 >\$00				\$))		
>\$00				\$				4		
>\$00				\$				4		
\$00				\$)		
>\$0"" >4\$0""				* * * * * * * * * * * *				4		
>4ΦU \$0 ""				\$ \$)) 4		
>4\$0""				\$				4		
>4\$0""				\$				4		
> \$0""			n	\$ \$				4		
0 800			R	\$ \$				_		
:00				\$)		
:0;								4		
:00				\$				+)	
.!'				Pane 5	6 o f 6	3408				MLH
				. ugc o						6/13/

"/ +012212%

!"#\$ %&	,							\$"()** \$, ()*)*	+)+ -
			!"#\$\$						
622%0 (3"%0 (+4		622. 3".) *6)	#2#\$ ¶/ #\$	%153 3\$	
\$							#' 0*1	!	
622\$)**	4-					/ ' 0*1	Ť	
3"\$)**	4-							
6				, 27*!8		9:	%\$!	, <u>!</u>	
?&0(\$					
?&				\$ \$ \$ \$ \$ \$			4)		
#(0				\$)		
‡ 2			R UJ	\$			4		
#2""			UJ	\$					
†2"" ;							4		
\$2""0				\$			+		
"#2""				\$)		
%0				\$ \$ \$ \$ \$			4		
%00 (\$))	
)%0" 7%#. =8				\$					
600				\$			+		
'00				-))		
3";							4		
				\$ \$ \$			4)		
> > >B00				\$)		
> »B00				\$)		
300				\$)		
3							4)		
>>4B0;				\$)		
»)B0;				\$)		
>> B00				\$			4		
> >B00				\$			+)		
300				\$			4		
30:0				\$			+)	
>>4B0""				\$ \$ \$ \$ \$ \$ \$. •	+	
>>4B0;							+))	
»)B0;				+			4		
>4>+B0;				-			4		
10(@A"@				\$				`	
₩A.@				,			A)	
<u>@</u> @2>B				+			4	`	
y2>B >\$0				4 \$			4 4)	
				C,		9:		6"!2	
>\$00()78				_+					
3(78)				+	
3 (78) . :; 78								,	
\$:078									

"/ +012212%

!"#\$ %&	,						\$"()** \$, ()*)*	+)+ -
			! "#\$\$					
622%0 (622. 0))	#2#\$	%153	
3"%0(+4.		3". 0	*6		!/#\$	3\$	
\$						#' 0*1	!	
622\$)**	4-				/ ' 0*1	1	
3"\$)**	4-						
&' (ī		+, &-!.	2	3			
2	6				, В	<2, 2	7*18	9:
)-	3") 4			В
++	#2)4			В
_)++			В
)	. >0				+			В
	DE6D				+	_		В
_	3				+-)		В
_	3					++		В
+)4	?		&)			
	DE)	_		В
	0&				+-			
	%00&))			
	. ;>00				44			В
	. ;>00)		В
+-	. ;>0	›)(0			4	+		В

!"#\$ %&	,				"()** ;, ()*)*	+)+ -
		4' !"#\$ ₆				
622%0 (622. 0	#2#\$	5	%5\$	
3"%0(4+	3" . 0	1/		\$4\$	
\$			#3		!	
622\$	+** -			0'1	!	
3"\$)**		, #1	• •	+!	
6			9:	%\$!	, <u>!</u>	
		\$ \$ \$ \$ 4 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				
. ; 0		\$		4		
. 2700&80		\$		-		
. 270080		\$)		
. 2700&8"00		4		+		
. ; " 00		\$)	
\$;:		\$		-)	
\$0"00		\$		4)	
\$0"00		\$)	
\$"00		\$)	
\$"00		\$		4+)	
\$"0		\$				
?&0;		\$				
?&0"(\$			+	
?&00		\$				
#2"0		\$				
;		\$				
2(0		\$		_		
2(""		\$		4+		
30"0		\$		4.	+	
30		ψ Λ			•	
3(+				
>4 \$;		9				
>4⊅, >4>)>В0 " 0		7				
		4		.	+	
>)>+B0"0		D)+		
>)>B0"0		\$		-		
>)\$0"0		\$)		
)\$0" 0				+		
))\$" 0		\$			4	
>)\$ >\$		\$				
>\$		\$ \$ \$ \$ \$		- -		
))\$;		\$				
0"00		\$)	
0"0						
4A)%0"0				+		
4>4\\$0; (\$			+	
4) \$ \$ \$				
)>\$0"0		\$)	+	
%0"0				_		
		+ \$ \$ \$ \$ \$ \$				
" 0		\$		4-		
). "0"00		* \$)4		
)040"0		\$)4)		
)0		\$,		
)0"0"00		Ф С				
		Φ				
)		Ð				
8!'		Page 59 of	F 6408			

!"#\$ %&	,				\$"()** \$, ()*)*	+)+ -
		4' !"#\$				
622%0 (622. 0		#2#\$	%5\$	
3"%0(4+	3" . 0		1/#\$	\$4\$	
\$				# ' 0*1	!	
622\$	+** -			/ ' 0'1	!	
3"\$)**			#1	+!	
6		, 27*!8	9:	%\$!	, !	
)"0	the ten ten ten ten ten ten ten ten ten te	\$				~ ~ ~ ~ ~ ~
6;;		\$		4)	
,		\$)4)	
2702""80		\$				
		C,	9:	6"!	2	
/ "0"		_4		+		
30(+				+		
; (+)		
/ "0		4		4		
B " 0()	_		+		

!"#\$ %&	,						()*)* -	+(
			4'!"#\$					
622%0(3"%0(4+		622. 0 3". 0			#2#\$!/ #\$	%5\$ \$4\$	
\$	+**					#' 0*1	!	
622\$ 3"\$)**	-				/ ' 0*1 #1	! +!	
&' (Ī		+, &-!.)				
2	6				, B	<2, 27*!8	9:	
+-44	6 3>0						В	
	DE				-	+	В	
4	В				_	=	В	
	DΕ				4	4	В	
	DE				+	4	В	
	DΕ				4	+	В	
))	<0;))	В	
	DE				+		В	
44	.;>	×4 (0					В	
+-	0&>	0			4		В	
	DE				-		В	
+- 4	0&>40				4	4	В	
))	. ;>	040			4 +	4	В	
	.;>	>4>+0			44-		В	
+4	.;>	>>40			4+	+	В	
_	. ; (>0)-4	4	В	
	DΕ				+))	В	
	DE				-44		В	

!"#\$ %&	,					"()** , ()*)*	+)+ -
		4' ! "#\$%					
622%0 (622. 0	_		#2#\$	%5\$	
3"%0(4+	3". 0			!/ #\$	\$\$	
\$)				#' 0*1	!	
622\$	+*-*	, B "	\$!		/ ' 0'1	Ţ	
3"\$)**				#1	+!	
6		, 27*!	8	9:	%\$!	, !	
.;()		
		C,		9:	6"!2		
/"0		aller sick sicker jaker sick blake sick sick sick sick sick sick		\$	+		
30(+				\$	+		
; (+				\$)		
/ "0		4		\$	4		
B"0()	•	_		\$	+		

!"#\$ %&	,						;"()** 5, ()*)*	+)+ -
			4' !"#\$					
622%0(3"%0(\$ 622\$	4+) +*-*		622. 0 3". 0 , B"	- \$!		#2#\$!/#\$ #' 0*1 /' 0*1	%5\$ \$\$! !	
3"\$)**		, D	Φ!		#1	! +!	
&' (Ţ		+, &-!.					
2	6 DE DE				, <u>B</u>	<2, 27*18	9: B B	
4	B DE DE				- 4	4+)) 4	B B B	
+-+) +	43»4(0 <0; DE				4) +	4 -	В В В	
44	. ;>	>4(0			_		В	
+-	0&>	0			4		В	
+- 4	0&>40				4+)	В	
))	.;> .;>00	040			4 + 4	+ 4	В В	
+4	.;> .;>00 DE	»40			44 4+) -))) 4	В В В	
4)	. ; (. ; (>40)- +	44	В В	
•	DE DE				+ -4)	44)	В В	

!"#\$ %&	,				\$"()** \$. ()*)*	+)+ -
)*!1!"1\"#\				
622%0 (+.	622. 0	-+	#2#\$	5	
3"%0(4+	3". 0	_	♯' 0*1	!	
\$				/ ' 0*1	<u>!</u>	
622\$	+*4* 4-			#1	!	
3"\$)**			, 2B "	3, #%6, H	
6		, 27*18	9:	%\$!	, !	
\$2, I 2J	K			44	+	
		C,	9:	6"!	2	
B"0				+	+	the same at a

!"#\$ %&	,						\$"()** \$, ()*)*	+)+ -
)*#!1!6"#%					
622%0 (+.		622. 0	_)	#2#\$	15=	
3"%0(+4.			*6		#' O*1	+!	
\$						/ ' 0*1	+!	
622\$	+* *	4				#1	+!	
3"\$	+* *	4				, 2B"	3, #%6, H	
6			, 27*!8		9:	%\$!	, !	
2, 1 27, 1 8			e was now have man have been been been have been been				+	
			C,		9:	6"	!2	
»B:								

"/ +012212%

!"#\$ %&	9						\$"()** \$, ()*)*	+)+ -
)*#!1!8"#%					
622%0 (+.		622. 0		+	#2#\$	1 5.	
3"%0(+4.			*6		#' 0*1	+!	
\$						/ ' 0*1	+!	
622\$)**	+				#1	+!	
3"\$)**	+				, 2B"	3, #%6, H	
6			, 27*!8		9:	%\$!	, <u>!</u>	
2, 1 27, 1 8			J+			mer tomat tomat tomat tomat tomat tomat to	+	
			С,		9:	6"	!2	
»B:					@			e ese us us us us

!"#\$ %&	3					\$"()** \$. ()*)*	+)+ -
			166)4*!!'	#!!"#%			
622%0 (, = +		622. 0	-44	#2#\$	15	
	*6			*6	#' 0*1	<u> </u>	
\$					/ ' 0*1	!	
622\$	+* *	++			#1		
3"\$	*6				, 2B"	3, #%6, H	
6			, 27*!8	9	: %\$	S! , !	
%0			4		4-	_	
<0			\$			-	
<0)-			_	

!"#\$ %&	,					\$"()** \$. ()*)*	+)+ -
			166)4*!!'	#!!"#%			
622%0 (, = +		622. 0	-44	#2#\$	15	
	*6			*6	#' O*1	!	
\$					/ ' 0*1	!	
622\$	+* *	++			#1		
3"\$	*6				, 2B"	<i \$6,="" h<="" td=""><td></td></i>	
6			, 27*!8	9:	%\$!	, <u>!</u>	
%0			4		4-	_	
<0			\$			_	

!"#\$ %&	,						\$"()** \$, ()*)*		+)+ -
			166)4*!!'	#!!"	#",				
622%0 (, = +		622. 0	4)		#2#\$,	=	
	*6			*6		#' O*1		Ī	
\$						/ ' 0*1		!	
622\$)*4*))				#1			
3"\$	*6					, 2B"	3	8, #%6, H	
6			, 27*!8		9:	, !		, !	
3"									
			C,		9:		6"!2		
>> B:0) +		

!"#\$ %&	,						\$"()** \$, ()*)*	+)+ -
		4' !"#%						
622%0 (#%	622. 0)	+-)	#2#\$		%5/	
3"%0(4+	3". 0			!/#\$		/)\$	
\$)				#' 0 *1		!	
622\$	+*+*				/ ' 0*1	1	!	
3"\$)**				#1		!	
6			, 27*!8	!	9:	%\$!	, !	
. ; K:0		UJ	\$))	
. ; J<**		UJ	\$)	
. ; J<0		UJ	\$ \$ \$			4)	
. ; JDK:0		UJ	\$)	
.;J>0 %''		J)))	
300		UJ	\$			4-)	
60		UJ	\$			+)	
\$;7>080		400UJ				_)	
02		UJ	\$			4)	
6"00		UJ	\$)))	
6"00		J))	
/ 0		UJ	\$)	
1		UJ	\$)	
3		UJ	\$ \$			44)	
# (J >>4(K"		400UJ	+			+-)	
%0"00 `		J	4+			4	Ś	
%0"00		J					ý	
			C,	!	9:	6"!	2	
/ "0					\$)		
; (+			+)		\$ \$)4		
B"0()			+		\$)		

Form 1 42 of 63 ORGANIC ANALYSIS DATA SHEET

MW02 (280-28076-1)

8015B

Laboratory:

TestAmerica Austin

SDG:

AVE0007

Client:

TestAmerica Denver

Project:

<u>USGS</u>

Matrix:

Water

Laboratory ID:

AVE0007-01

File ID:

K-A0015-0

Sampled:

Form Rev: 9/21/10

Prepared:

05/03/12 15:38

Analyzed:

05/03/12 23:29

Solids:

04/22/12 15:45

Preparation:

Direct Injection- GC

Initial/Final:

 $1 \, \text{mL} / 1 \, \text{mL}$

Batch:	12E0053	Sequence:	<u>V000294</u>	Calibration:	A12D006	Instrument:	GC11A
CAS NO.	COMPOUNI)		DILUTION	CON	VC. (mg/L)	Q
111-46-6	Diethylene gl	lycol		1		25.0 UJ	υ
10-014	m	4					

Diethylene glycol		1	2	U	
Ethylene Glycol		1	2	U	
Propylene glycol		1	2	U	
Triethylene Glycol		1	2	U	
NITORING COMPOUND	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
hol	104	104	70 - 130		
	Ethylene Glycol Propylene glycol Triethylene Glycol NITORING COMPOUND	Ethylene Glycol Propylene glycol Triethylene Glycol NITORING COMPOUND ADDED (mg/L)	Ethylene Glycol 1 Propylene glycol 1 Triethylene Glycol 1 NITORING COMPOUND ADDED (mg/L) CONC (mg/L)	Ethylene Glycol 1 2 Propylene glycol 1 2 Triethylene Glycol 1 2 NITORING COMPOUND ADDED (mg/L) CONC (mg/L) % REC	Ethylene Glycol 1 25.0 UJ Propylene glycol 1 25.0 UJ Triethylene Glycol 1 25.0 UJ NITORING COMPOUND ADDED (mg/L) CONC (mg/L) % REC QC LIMITS

MLH 6/13/12

Printed: 05/10/2012

!"#\$ %&	,							\$"()** \$, ()*;		+)+ -
)!"0%						
622%0(3"%0(\$ 622\$ 3"\$	4 6 +** +**	+		622. 0 3". 0	4)		#2#\$!/#\$ #' 0*1 /' 0*1		%B5 (+ 2 +! +!	
6				, 27* • 8		Ω.	0/.	\$!	,	
				4+	NEAR NEAR SEAR NEAR NEAR NEAR NE	9:)) 4+)	, !	
%2 !0 322 302"02))	4 4	
B >)			- 4)		+	
622%0(622. 0			+2#\$		⁺ %В5	
3"%0(\$ 622\$	4 6 +**			3". 0			!/#\$ #' 0*1 /' 0*1		+ 2 +! +!	
3"\$	+**)					, 01		ΤΙ	
6 6 #			J	, 27*!8		9:	%	\$!	, !	
)!"0\6!!'						
622%0(3"%0(\$ 622\$ 3"\$	4+6 +** +* *) +		622. 0 3". 0) +-		#2#\$!/ #\$ #' 0*1 / ' 0*1		%B5+ +6++ 2 +! +!	
6				, 27*!8		9:	%	\$!	, !	486. 1886. 1886. 1886. 1886. 18
\$22(6 \$22(. \$22(. \$22(# \$22(!0 \$22(%2				44) +)-)) 4+)		
\$22(322 \$22(\$22(\$22((\$22(\$22(B)) 4+ - 4		4	

Page 71 of 6408

"#\$ 6&	,							5"()** 5, ()*)*	+)+ -
				! "O\$%					
622%0 (622. ()	+	#2#\$		%B5	
" %0 (46		3" . 0			!/#\$		4-%3!\$	
						#' 0*1		+!	
22\$	+**	-				/ ' 0*1		+!	
"\$	+**								
				, 27*!8	9:		%\$!	, <u>!</u>	
_			3.86U J+)		
2			J,	-			44	+	
				\$			-		
				\$ \$					
				4+			+		
							+)		
·							+		
(2)4 44			4		
(44			4)		
`				7			4		
				\$				+	
			8.2U	+4			44	+	
0				\$ \$			+		
,							+		
(+ 4			+	+	
22%0 (O\$\\6!!'		#2# \$		%B5	
	4+6		! " 622. (3 " . 0)	+	#2# \$!/#\$		%B5 4%3!\$	
" %0 (622. ()	+	!/#\$ #'0*1		4%3!\$ +!	
'%0 (22 \$	+* *))	622. ()	+	!/#\$		4%3!\$	
'%0 (22 \$)) +	622. ()	+	!/#\$ #'0*1		4%3!\$ +!	
"%0 (22\$ "\$	+* *		622. (0		!/#\$ #'0*1	%\$!	4%3!\$ +! +!	
"%0(22\$ "\$ 22(6	+* *		622. (3". 0)	+ 9: M.	!/#\$ #'0*1	%\$!)	4%3!\$ +!	.
"%0(22\$ "\$ 22(6 22(62	+* *		622. (, 27*!8 4 4	9:	!/#\$ #'0*1	44	4%3!\$ +! +!	
"%0(22\$ "\$ 22(6 22(62 22(.	+* *		622. (3". 0	, 27*!8 4 4	9:	!/#\$ #'0*1)	4%3!\$ +! +!	
"%0(22\$ "\$ 22(6 22(62 22(.	+* *		622. (3". 0	, 27*!8 4 4	9:	!/#\$ #'0*1	44	4%3!\$ +! +!	
"%0(22\$ "\$ 22(6 22(62 22(. 22(.	+* *		622. (3". 0	, 27*!8 4 4 * \$	9:	!/#\$ #'0*1) 44 -	4%3!\$ +! +!	
22\$ 22(6 22(62 22(. 22(. 22(. 22(.	+* *		622. (3". 0	, 27*!8 4 4	9:	!/#\$ #'0*1) 44 - +	4%3!\$ +! +!	
'%0(22\$ '\$ 22(6 22(62 22(. 22(. 22(0 22()	+* *		622. (3". 0 2.0U	, 27*!8 4 4 * \$ \$)+ +	9:	!/#\$ #'0*1) 44 -	4%3!\$ +! +!	
"%0(22\$ "\$ 22(6 22(62 22(. 22(. 22(. 22(0 22("" 22(!''	+* *		622. (3". 0 2.0U	, 27*!8 4 4 + \$ \$)+ + 4	9:	!/#\$ #'0*1) 44 - + +) +	4%3!\$ +! +!	
"%0(22\$ "\$ 22(6 22(62 22(. 22(. 22(0 22("" 22(!(22(!() 22(!() 22(!() 22(!() 22(!() 22(!() 22(!() 22(!() 22(!() 22(!() 22(!() 22(!() 22(!() 22(!()	+* *		622. (3". 0 2.0U	, 27*!8 4 4 * \$ \$)+ +	9:	!/#\$ #'0*1) 44 - + +) +	4%3!\$ +! +!	
"%0(22\$ "\$ 22(6 22(62 22(. 22(. 22(0 22("" 22(!(. 22(%2 22(%(.	+* *		622. (3". 0 2.0U	, 27*!8 4 4 + \$ \$)+ + 4	9:	!/#\$ #'0*1) 44 - + +) +	4%3!\$ +! +!	
"%0(22\$ "\$ 22(6 22(62 22(. 22(. 22(. 22(. 22(. 22(+* *		622. (3". 0 2.0U	, 27*!8 4 4 * \$ \$)+ + 4 \$ +	9:	!/#\$ #'0*1) 44 - + +) +	4%3!\$ +! +! +!	
22%0("%0("%0(22\$ "\$ 22(6 22(62 22(. 22(. 22(. 22(! 22(!') 22(%())))))))))	+* *		622. (3". 0 2.0U	, 27*!8 4 4 * \$ \$)+ + 4 \$ +	9:	!/#\$ #'0*1) 44 - + +) + 4)	4%3!\$ +! +! +!	
"%0(22\$ "\$ 22(6 22(62 22(. 22(. 22(. 22(!(. 22(!(. 22(%2 22(%(. 22(%(. 22(%(. 22(%(. 22(%(. 22(%(. 22(%(. 22(%(. 22(%(. 22(%(. 22(%(. 22(.)	+* *		622. (3". 0 2.0U	, 27*!8 4 4 * \$ \$)+ + 4 \$ +	9:	!/#\$ #'0*1) 44 - + +) +	4%3!\$ +! +! +!	
"%0(22\$ "\$ 22(6 22(62 22(. 22(. 22(. 22(. 22(+* *		622. (3". 0 2.0U	, 27*!8 4 4 * \$ \$)+ + 4	9:	!/#\$ #'0*1) 44 - + +) + 4) 4	4%3!\$ +! +! +!	
22\$ 22(6 22(62 22(+* *		622. (3". 0 2.0U	, 27*!8 4 4 + \$ \$)+ + 4 \$ +	9:	!/#\$ #'0*1) 44 - + +) + 4) 4	4%3!\$ +! +! +!	
22\$ 22(6 22(62 22(+* *		622. (3". 0 2.0U	, 27*!8 4 4 + \$ \$)+ + 4 \$ \$	9:	!/#\$ #'0*1) 44 - ++) + 4) 4 44++	4%3!\$ +! +! +!	ML

!"#\$ %&	,						\$"()** \$. ()*)*	+)+ -
				! "O\$%6!!'				
622%0 (622. 0		#2#\$	%B5	
3"%0(4+6			3". 0	+	!/ #\$	4%3!\$	
\$						#' 0*1	+!	
622\$	+* *	+4				/ ' 0*1	+!	
3"\$	+* *	+						
3				, 27*!8	9:	%\$!	, 1	
6 \$22 (L			alder alder aller aller Aller)-		alle alle alle alle alle alle alle alle		oth table also also also
				434"				
622%0 ()6			622. 0	4 +	#2#\$	%B544	
3"%0()6			3" . 0	44	!/#\$	+4&	
\$						#' 0*1	4!	
522\$	+*4*	4				/ ' 0*1	4!	
3"\$	+*4*	4						
3				, 27*18	9:	%\$!	, 1	
%			UJ	\$				
				434"%6!!'				
622%0 ()6			622. 0	4 +	#2#\$	%B544	
3"%0()6			3" . 0	444	!/#\$	+4&	
`	•					#' 0*1	4!	
622\$	+*4*	_				/ ' 0*1	4!	
3"\$	+*4*	4						
6				, 27*18	9:	%\$!	, !	
% >\$22(, 27*!8 \$				

#7! !"#\$ \$"()** +)+ %& \$, ()*)* 6 2 **%\$!** %0**(** 2.15U 6 4+ 622. 0 622\$+*-* 4 4 2 4+4 622. 0 622\$+*-* 4 4 \$22(302"02\$22(4+ 622. 0 622\$+* 3". 0 3"\$+** B302"02 4+ 622. 0 622\$+* ++) 3". 0 3"\$+** %0. 622 *!6)+ 622. 04++ 622\$)*)* 4) 0(>\$22(622. 0 622\$+*)-*Į . (>\$22(622. 0 622\$+* * 1 >**\$22(** 622. 0 622\$+* +4-* [/ (>\$22(622. 0 622\$+* * 1 \$22(#) 9(\$22(* 4+ 622. 0 -+ + 622\$+* B#9(* 1 622. 0 622\$+*)4 -)-\$22(1 * Į 9(\$22(622. 0) 622\$+** BI 6 * 1 622. 0 622\$+** * ! B\$22((2 **%+)** 622. 0 622\$)**

VOC Result Recalculations for USGS Lot # 280-28076-1

EPA Method 8260B (Volatiles by GC/MS)

All sample results were calculated by instrument software.

Batch 280-117414 LCS %R for acetone = $\frac{M}{T}$ 100 $\frac{83.2}{80.0}$ 100 104%; **correct**

where: M = measured value

SVOC Result Recalculations for USGS Lot # 280-28076-1

EPA Method 8270C (Semivolatiles by GC/MS)

All sample results were calculated by instrument software.

Batch 117171 LCS %R for phenol = $\frac{M}{T}$ 100 $\frac{77.5}{80.0}$ 100 97%; correct

where: M = measured value

DRO and GRO Result Recalculations for USGS Lot # 280-28076-1

EPA Method 8015B (DRO)

All sample results were calculated by instrument software.

Batch 117191 LCSD %R for DRO =
$$\frac{M}{T}$$
 100 $\frac{2}{2}$ 100 100%; **correct**

EPA Method 8015B (GRO)

All sample results were calculated by instrument software.

Batch 117914 LCS %R for GRO =
$$\frac{M}{T}$$
 100 $\frac{114}{101}$ 100 113% : correct

where: M = measured value T = true value

RSK-175 Result Recalculations for USGS Lot # 280-28076-1

EPA Method RSK-175 (dissolved gases and propane)

All sample results were calculated by instrument software.

Batch 177933 LCS %R for methanc =
$$\frac{M}{T}$$
 100 $\frac{67.1}{73.2}$ 100 92%; **correct**

Batch 34676 LCSD %R for propane =
$$\frac{M}{T}$$
 100 $\frac{134}{151}$ 100 89%; correct

where: M = measured value T = true value

PAH Result Recalculations for USGS Lot # 280-28076-1

EPA Method 8370C-SIM (PAH)

All sample results were calculated by instrument software.

Batch 118594 LCS %R for phenanthrene = $\frac{M}{T}$ 100 $\frac{887}{900}$ 100 99%; **correct**

where: M = measured value

Glycols Result Recalculations for USGS Lot # 280-28076-1

EPA Method 8015B (glycols)

All sample results were calculated by instrument software.

Batch 12E0053 LCS %R for ethylene glycol = $\frac{M}{T}$ 100 $\frac{407}{400}$ 100 102%; correct

where: M = measured value

Metals Result Recalculations for USGS Lot # 280-28076-1

EPA Method 6010B (metals by ICP)

All sample results were calculated by instrument software.

Batch 118834 LCS %R for boron =
$$\frac{M}{T}$$
 100 $\frac{926}{1000}$ 100 93%; correct

EPA Method 6020 (metals by ICP-MS)

All sample results were calculated by instrument software.

Batch 117880 LCS %R for dissolved cadmium =
$$\frac{M}{T}$$
 100 $\frac{37.8}{40}$ 100 94%; correct

EPA Method 7470A (mercury by CVAA)

All sample results were calculated by instrument software.

Batch 118315 LCSD %R for dissolved mercury =
$$\frac{M}{T}$$
 100 $\frac{4.91}{5.00}$ 100 98%; correct

where: M = measured value T = true value

General Chemistry Result Recalculations for USGS Lot # 280-28076-1

EPA Method 350.1 (ammonia)

All sample results were calculated by instrument software.

Batch 119085 LCS %R for ammonia =
$$\frac{M}{T}$$
 100 $\frac{5.14}{5.00}$ 100 103%; correct

EPA Method 353.2 (nitrate/nitrite)

All sample results were calculated by instrument software.

Batch 119089 LCS %R for nitrate/nitrite =
$$\frac{M}{T}$$
 100 $\frac{5.08}{5.00}$ 100 102%; correct

EPA Method 365.1 (total and dissolved P)

All sample results were calculated by instrument software.

Batch 119330 LCS %R for dissolved P =
$$\frac{M}{T}$$
 100 $\frac{40.5}{40.0}$ 100 101%; correct

EPA Method 9056 (anions by IC)

All sample results were calculated by instrument software.

Batch 117895 LCS %R for dissolved chloride =
$$\frac{M}{T}$$
 100 $\frac{24.9}{25.0}$ 100 100%; correct

EPA Method 9060 (total and dissolved organic carbon/total and dissolved inorganic carbon)

All sample results were calculated by instrument software.

Batch 118783 LCS %R for total organic carbon =
$$\frac{M}{T}$$
 100 $\frac{24.4}{25.0}$ 100 97%; correct

Batch 119515 LCS %R for dissolved inorganic carbon =
$$\frac{M}{T}$$
 100 $\frac{25.4}{25.0}$ 100 101%; correct

SM Method 2540C (Total Dissolved Solids)

All sample results were calculated by instrument software

Batch 117267 LCS %R for total dissolved solids =
$$\frac{M}{T}$$
 100 $\frac{495}{501}$ 100 99%; correct

It should be noted that hand-calculated sample results could not be verified for the TDS analysis due to a lack of raw data in the data package.

EPA Method 425.1 (methylene blue active substances - MBAS)

All sample results were calculated by instrument software

Batch 235205 LCS %R for total dissolved solids =
$$\frac{M}{T}$$
 100 $\frac{0.476}{0.500}$ 100 95%; correct

It should be noted that hand-calculated sample results could not be verified for the MBAS analysis due to a lack of raw data in the data package.

where:
$$M =$$
 measured value $T =$ true value

56 of 63 Organic Worksheet (GC/MS)

SDG #: 280-28076-1	Method: EPA 8260B (VOA)	Laboratory Sample IDs:
Matrix: Water	Batch #s; 280-117414	280-28076-1 (preserved) and -2 (unpreserved)
Tuning (pass/fail): pass	TICs Required? (yes/no) yes	

lle lle des llede de viere de le de la les llevies de de la de de le A	alyte	8 75 5 75 0 75 36 86 86 1		Calib	ration	((s. galea)si	Method	5X	LCS	MS	MSD	MS/	LCSD	LCS/	ola (julija si) ala (julija si)	
한 영국에는 안 있는 것이 되었다.	itliers)		Int.	RF	RSD/ R ²	ICV/C CV %D	Blank	(10X) Blank	%R	%R	%R	MSD RPD	%R	LCSD RPD	\$ \$ 4 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	17774 1964 1964 1964
A	cetone					-41.3		NA		NA	NA	NA.				
2-butanone			NΔ	0.0341				NA		NA	NA	NA				
ethanol			NΔ	0.0009				NA		NA	NΛ	NA				
Tert-butyl alcohol acrylonitrile			NA	0.0059		25.2/		NA		NA	NA	NA				
aery	lonitrile		NA	0.0273				NA		NA	NA	NA				
isol	butanol		NA	0.0021				NA		NA	NΛ	NΛ				
isop	ropanol		NA	0.0055		/-32.1		NA		NA	NA	NA				
Sample ID None		Construction Control of the Control					Recovery						retako kieta 1 Grifa II. ila 1 Grifa Brita			
on the second	and the second s	nep de Colo C	1744	14-14-17-17-	된다	44.44	Outliers		alipaiyi jedin	计数分数		4.63.44	i zyvým jvým		1000	44
Sample ID	Area	RT	Ar	ea	RT	Area	R	Т	Area	RT		Area	RT	Ar	ea	RT
None																
				1												

Comments: MS/MSD other SDG, same matrix, unknown client Sample TAL = 80 compounds: LCS and MS spikes: 67 compounds

linear ICAL cone. ratio on Y axis; (B)(IS cone 12.5) = cone y-intercept Both samples diluted 20X (aliquot volume reduced)

57 of 63 Organic Worksheet (GC/MS)

SDG #: 280-28076-1	Method: SW846 8270C (SVOA)	Laboratory Sample IDs:
Matrix: Water	Batch #s: 119099	280-28076-1 and -DL
Tuning (pass/fail): pass	TICs Required? (yes/no) yes	

ili ili diddi. Syny fe prin i kweny na Gripo ne na ili dago ka na oka Analyte o kasali i obely ika	7.5.4.6	Calib	ration		Method	5X	LCS	MS	MSD	MS/	LCSD	ACS//	44.29	2000
(outliers)	Int.	RF	RSD/ R ²	ICV/C CV %D	Blank	(10X) Blank	%R	%R	%R	MSD RPD	%R	LCSD RPD		事情劳育 本源明-办 物学等会
Benzyl alcohol	NA				0.528J	2.64		NA	NA	NA				
Bis(2-chloroisopropyl)ether	NΛ			/22.1		NA		NA	NA	NΛ				
4-nitrophenol	NA			/26.7		NA		NA	NA	NA				
Sample ID		1112 771 191 191 130 100 11 191 130 100 100 100 130 100 100 100		urrogate	Recovery	Outliers							188 第 期 期 5 的 库 35 7 8 7 7 章 8 第 章	
None														
			*****************	and the second s	Outliers	anconoconomica de la compensa de la		_	romerong maconin					4450
Sample ID Area RT	Ar	ea	RT	Area	y dyn a gynnyd R		Area	RT		Area	RT	Ar 	ea and m	/RT/

Comments: MS/MSD other SDG, same matrix, unknown client Sample TAL: 51 cmpds: LCS and MS/MSD TAL: 45 cmpds

linear ICAL cone. ratio on Y axis; (B)(IS cone 12.5) = cone y-intercept

58 of 63 Organic Worksheet (GC/HPLC)

SDG #: 280-28076-1	Method: EPA 8015B (GRO and DRO)	Laboratory Sample IDs: 280-28076-1 (preserved) and
Matrix: Water	Batch #s:	280-28076-2 (unpreserved, for GRO only)
Sample Cleanup: NA		

Intercept	RSD/R ²			Method	5X	LCS	MS	MSD	MS/	LCS	LCS
선물에 되는 사람들이 가득하다면 다	KSD/K	ICV/CCV %D	CCal RT	Blank	Blank	%R	%R*	%R*	MSD RPD*	D%R	LCSD RPD
					NA		NA	NA	NA	er animinaaninin marina emakaran	,manoAcoAco-mailman catoAcocook
NA					NA		NA	NA	NA		
le de de de de de de de		Surr	L ogate Outlic	ers de de de de de de		abolio di seo, di		. Julio (ilia (ilia (ilia ili			1. (b) 18 30
%R			vissounigeominaeminoamiscominoam	diseasementing of the government of the second	Sa	ample ID		Su	rrogate		%R
117											
		and the condition on the condition of th									
	% R	%R	Sarri Sample ID	Surrogate Outlie %R Sample ID Surro	Sarrogate Outliers % R Sample ID Surrogate %R	Surrogate Outliers %R Sample ID Surrogate %R Sample ID	Surrogate Outliers %R Sample ID Surrogate %R Sample ID	Surrogate Outliers %R Sample ID Surrogate %R Sample ID	Surrogate Outliers Sample ID Surrogate %R Sample ID Su	Surrogate Outliers %R Sample ID Surrogate %R Sample ID Surrogate 117	Surrogate Outliers %R Sample ID Surrogate 117

Comments: * MS/MSD from other SDG, same matrix, unknown client

GRO – reduced aliquot due to high conc. = 20X dilution DRO – slightly reduced aliquot due to low sample volume; slightly elevated DLs

59 of 63 Organic Worksheet (GC/HPLC)

SDG #: 280-28076-1	Method: RSK-175 (Dissolved Gases and Propane)	Laboratory Sample IDs: 280-28076-1
Matrix: Water	Batch #s: 117933 (dissolved gases) 34676 (propane)	
Sample Cleanup: NA		

Analyte	Calil	ration (1	= front/pr	imary e	olumn, 2	= back/cor	nfirm. co	lumn)	Method	5X	LČS	MS	MSD	MS/	LCS	LCSD RPD
(outliers)	Inte	rcept	RSD)/ R ²	ICV/C	CV %D	CCa	l RT	Blank	Blank	%R	%R	%R	MSD RPD	D%R	
·····································		2	71/	2	1	2	1	2		davirdrojs	1999	1.949-94	14249	KPD	19/1/03/9	KPD
methane										NA		NA	NA	NA		
ethane	NA	NA								NA		NA	NA	NA		
propane	NA	NA								NA		NA	NA	NA		
													ļ			
													ļ			
													-			
	_	-						-	 		-	-	-		-	
	9-20-11-22-22-2				Q.,,,,	gate Oi	Allama	e vie					 	l Haritania Alaikania	<u> </u> 	
<u>n din din din din din din din din din di</u>		0 / // / / / / / / / / / / / / / / / /		adjudleda Artesa	SHILL	gate Or	mucis	8 a (%R		in the the time.	<u>(la de la comence)</u> Se vinciale		alfirafferillipelipe 16. De Soalie	- ((3D)
Sample ID Surrogate	1 1/1	2	S	Sample	ID	S	urroga	te –	1 2	S	unple I	D	Sur	rogate	1	2
None																
							unaharan karanakan pun									-
	热步落腔				Confir	mation	Outlier	s/^///	美国基本企							
Sample ID Analyte	RP	D		Sample	ID	7)-1 10-17	Analyte	osy, 77	RPD	S	ample II	D	An	alyte	R	PD
None																

Comments: * MS/MSD from other SDG, same matrix, unknown client

[^] no confirmation for ethane due to coelution on one column ** surrogate analyzed for propane analysis only

60 of 63 Organic Worksheet (GC/MS)

SDG #: 280-28076-1	Method: SW846 8270C-SIM (PAH)	Laboratory Sample IDs:
Matrix: Water	Batch #s: 118594	280-28076-1
Tuning (pass/fail): pass	TICs Required? (yes/no) no	

Analyte		Calibr	ation	·夏勃伊克莱克	Method	5X	LCS	MS	MSD	MS/	(2) 基本		业负重要	144
(outliers)	1/201/1987/ 1/201/1988/ 1/201/1988/ 1/201/1988/	RF	RSD/ R ²	ICV/CCV %D	Blank	(10X) Blank	%R	%R	%R	MSD RPD		10 77 77 8 1016 5 77 6 127 72 73 73 1 77 73 73 73		
Benzo(b)Huoranthene	NA			e entrante de la companya de la comp	15.31	76.5		NΑ	NA	NA				
Benzo(a)pyrene	NΛ				17.13	85.5		NA	NA	NA				
Benzo(k)fluoranthene	NA.				12.1J	60.5		NA	NA	NA				
Benzo(ghi)perylene	NA				41.2J	206		NA	NA	NA				
Dibenz(ah)anthracene	NA				44.63	223		NA	NA	NA				
Fluoranthene	NA				25.8J	129		NA	NA	NA				
pyrene	NA.				63.0J	315		NA	NA	NA				
Indeno(1,2.3-cd)pyrene	NA				30.0J	150		NA	NA	NA				
Sample ID			UNIT DIRECTOR OF THE PROPERTY	rrogate Rec		liers*							11 11 11 11 11 11 11 11 11 11 11 11 11	9628 8670 West of the total
Sample ID Area none	RT Ar	ea l	RT	//// IS O	utliers RT/	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	rea	RT		Area	/RT	// / / Ar	ea 🦠 🧞	RT/
HOHE													USA AND DESCRIPTION OF THE PROPERTY OF THE PRO	

Comments: MS/MSD other SDG, same matrix, unknown client sample diluted 4X due to high cone.
*Surrogates not assessed due to sample dilution

LCS missing 1- and 2-methy lnaphthalene

no measure of precision

61 of 63 Organic Worksheet (GC/HPLC)

SDG #: 280-28076-1	Method: EPA 8015B (glycols)	Laboratory Sample IDs: AVE0007-01
Matrix: Water	Batch #s: 12 E0053	
Sample Cleanup: NA		

Analyte	(47 m 4 m)	· // 4 / 4 / 4 / 5	alibration (1997)	建筑基件交换	Method	5X	LCS	MS	MSD	/MS///		14.47.79
(outliers)	Intercept	RSD/R ²	ICV/CCV %D	CCal RT*	Blank	Blank	%R	%R	%R	MSD RPD	事故的你 用力的你 其分类的	1 1982 (1984) 1 1894 (1984) 1 1894 (1984) 1 1894 (1984)
none												
								ļ				
						-						
In the design to the			Surroga	te Outliers	marriage en al actività de la companya de la compa		4.0.6.6.0	, 1000 0	to to to the	li de de de de de		le de la march
Sample ID Surrogate	%R		Sample ID	Surro	gate %R	S	ample ID	4 mg 1911 Yapingo 6 day 196 di 2014 (19)	Su	rrogate		%R
											_	

Comments: MS/MSD from other SDG, same matrix, unknown client No MSD or LCSD or replicate
*RT windows not reported

62 of 63 Inorganic Metals Worksheet

SDG #: 280-28076-1	Method(s): EPA 6010B (ICP-AES), EPA 6020 (ICP-MS) & EPA 7470A	Laboratory Sample IDs; 280-28076-1
	(CVAA)	
Matrix: Water	Batch #s: ICP 118834 total/117859 D: ICPMS 118058total /117880 D;	
	CVAA 118315 total and D	
ICP-MS Mass Cal. (pass/fail): pass	ICP-MS Resolution (pass/fail): pass	

Analyte (outliers)	545-47-45 545-47-45 545-47-45	Calibration						5X Blank or	or LCS	MS %R	MS/MS D Rep.	Serial Dil.	ICS AB	ICS A	CRA/ CRI	LCS/	4) 4 (1) 4) 4 (4) 4) 4) 4) 4) 4) 4)	かめます 中心かり 中立サイフ 中立ナイフ	かな事で であるか 自分をから などを変す
10 to 50 to	Int.	\mathbf{R}^2	ICV	CCV	ICB	CCB		(5X MDL)	(5X MDL)		RPD	%D	%R	MDL	%R	RPD	2000		
Sb D	NA	NA			0.786	2.06	0.782	10.3		NA	NA	NA	NA	NΛ			Î		
Na D	NA	NA	ĺ			178	149	890		NΛ	NΛ	NA	NA	NA		Ì			
Co D	NA	NA					0.0800	0,4		NA	NA	NΑ	NΑ	NΑ					
Ba D	NA	NA						NA		NA	NA	NA	NA	NA	68				
As	NA	NA				0.344		1.72		NA	NA	NA	NA	NA	132				
Hg					049	047		(0.135)		NΛ	NΛ	NA	NA	NA					
Na	NA	NA				190		95()					NA	NΔ					
Sb	NA	NA			0.772			3.86		NA	NA	NA	NA	NA					
Ag	NA	NA				1.64		8.2		NA	NA	NA	NΛ	NA					
Λl	NΛ	NΛ						NA		NA	NΑ	16	NΑ	NΑ					

	JS Out	tliers	ya ya ya ya wala ka ya ya ya dha da Ka wa kaza wa ƙasara ƙa ƙa ƙasara ƙ	IS Outliers						
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery			
None				None						

Comments: D=dissolved All results < ICS spike QC parent from other SDG, same matrix, unknown client: ICPMS total; ICP D;ICPMS D; CVAA total; CVAA D Hg CRA reported in raw data only

63 of 63 General Chemistry Worksheet

SDG #: 280-28076-01	Matrix: Water	Laboratory Sample IDs: 280-28076-1
Method Batch #s: EPA 365.1 (total and dissolved	P); EPA 350.1 (Ammonia); EPA 9056 (dissolved anions by IC)	
Method/Batch #s: EPA 353.2 (Nitrate/Nitrite); SI		
Method/Batch #s: EPA 9060 (Total and Dissolve	d Inorganic Carbon - TIC/ total and Dissolved Organic Carbon) -	
TOC		
Method/Batch #s: EPA 425.1 (Methylene Blue A	ctive Substances – MBAS)	

Analyte (outliers)	Calibration (1)					1972 美多	1/2 1/5X 1/1/2	10-19-18-18-18-18-18-18-18-18-18-18-18-18-18-		· 佐養學斯·	MS/	Lab (Partial/	19900	100000	
		\mathbf{R}^2	lCV	CCV	ICB	ССВ	Method Blank	Blank or (5X MDL)	LCS %R	MS %R	MSD/ %R	MSD RPD	Rep.	Total RPD	LCSD %R	LCS/ LCSD RPD
Total P					2.30ug /LJ	2.55ug /LJ	2.33 ug/l	12.75ug/l	3 7 35 45 1	NA	NA	NΛ	NA	NA		
Ammonia						0.031 mg/l J	0.430 mg/LJ	2.15 mg/l		NA	NA	NA	NA	NA		
Dissolved P					2.30ug /IJ	2.55ug /LJ	-4.67ug/}	12.75ug/l/ (9.0ug/l)		NA	NA	NA	NA	NA		
TIC						0.419 mg/LJ		2.1mg/l		NA	NA	NA	NA	NA		
Dissolved TIC						0.233 mg/lJ		1.17mg/l		NA	NA	NA	NA	NA		

Comments: dilutions: Cl 20X; total and dissolved P 2X

MS/MSD parent from other SDG, same matrix. unknown client: ammonia; nitrate/nitrite; total and dissolved P: anions, total and dissolved TIC; total and dissolved TOC; MBAS Negative blank values >MDL not reported in summaries; reported in raw data.